4.6 Article

Enhanced effect of plasma on catalytic reduction of CO2 to CO with hydrogen over Au/CeO2 at low temperature

期刊

JOURNAL OF ENERGY CHEMISTRY
卷 26, 期 3, 页码 488-493

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jechem.2016.11.023

关键词

CO2 reduction; Plasma catalysis; Enhanced effect

资金

  1. National Natural Science Foundation of China [21673030]
  2. Fundamental Research Funds for the Central Universities [DUT16QY49]

向作者/读者索取更多资源

In terms of the reaction of CO2 reduction to CO with hydrogen, CO2 conversion is very low at low temperature due to the limitation of thermodynamic equilibrium (TE). To overcome this limitation, plasma catalytic reduction of CO2 to CO in a catalyst-filled dielectric barrier discharge (DBD) reactor is studied. An enhanced effect of plasma on the reaction over Au/CeO2 catalysts is observed. For both the conventionally catalytic (CC) and plasma catalytic (PC, P-in = 15 W) reactions under conditions of 400 degrees C, H-2/CO2 = 1, 200 SCCM, GHSV = 12,000 mL center dot g(-1) cat center dot h(-1), CO2 conversions over Au/CeO2 reach 15.4% and 25.5% due to the presence of Au, respectively, however, those over CeO2 are extremely low and negligible. Moreover, CO2 conversion over Au/CeO2 in the PC reaction exceeds 22.4% of the TE conversion. Surface intermediate species formed on the catalyst samples during the reactions are determined by in-situ temperatureprogrammed decomposition (TPD) technique. Interestingly, it disclosed that in the PC reaction, the formation of formate intermediate is enhanced by plasma, and the acceleration by plasma in the decomposition of formate species is much greater than that in the formation of formate species on Au/CeO2. Enhancement factor is introduced to quantify the enhanced effect of plasma. Lower reactor temperature, higher gas hourly space velocity (GHSV), and lower molar ratio of H-2/CO2 would be associated with larger enhancement factor. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B. V. and Science Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据