4.2 Article

MiR-4673 Modulates Paclitaxel-Induced Oxidative Stress and Loss of Mitochondrial Membrane Potential by Targeting 8-Oxoguanine-DNA Glycosylase-1

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 42, 期 3, 页码 889-900

出版社

KARGER
DOI: 10.1159/000478644

关键词

miR-4673; ROS; MMP; OGG1; Paclitaxel

资金

  1. national natural science foundation of China [81172615, 81570062]
  2. natural science foundation of Guangdong province [S2013010011737, 2016A030313681]
  3. medical science research foundation of Guangdong province [B2014309]

向作者/读者索取更多资源

Background: Our previous study identified a novel microRNA, miR-4673, which is upregulated in A549 cells exposed to paclitaxel (PTX). In this study, we investigated the role of miR-4673 in PTX-induced cytotoxicity. Methods: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, apoptosis assay, 5,5', 6,6'-Tetrachloro-1,1', 3,3'-tetraethylimidacarbocyanine iodide (JC-1) staining and 2', 7'-Dichlorofluorescein (DCFH) staining were used to evaluate cell viability, apoptosis, mitochondrial membrane potential (MMP) loss and reactive oxygen species (ROS) generation in A549 and H1299 cells. Bioinformatics analysis and Luciferase reporter assay were used to explore whether 8-oxoguanine-DNA glycosylase-1 (OGG1) is a target gene of miR-4673. Results: Enforced expression of miR-4673 decreased cell viability and increased PTX-induced apoptosis, MMP loss and reactive oxygen species (ROS) generation in A549 and H1299 cells. Bioinformatics analysis, which was used to identify potential target of miR-4673, revealed a binding site of miR-4673 in 3' UTR of OGG1. Luciferase reporters assays showed that miR-4673 specifically binds to 'CUGUUGA' in 3' UTR of OGG1. Enforced expression of miR-4673 decreased accumulation of OGG1. In addition, silencing OGG1 enhanced inhibitory effects of PTX on apoptosis, MMP loss and ROS generation, which is similar to effects of miR-4673. Moreover, enforced expression of OGG1 compromised promoting effects of miR-4673 on PTX-induced apoptosis, MMP loss and ROS generation. Conclusion: miR-4673 modulates PTX-induced apoptosis, MMP loss and ROS generation by targeting OGG1. (C) 2017 The Author(s) Published by S. Karger AG, Basel

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据