4.7 Article

Membrane-based seawater desalination: Present and future prospects

期刊

DESALINATION
卷 401, 期 -, 页码 16-21

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.desal.2016.10.002

关键词

Membranes; Seawater desalination; Specific energy consumption; Greening of SWRO

向作者/读者索取更多资源

Given increasing regional water scarcity and that almost half of the world's population lives within 100 km of an ocean, seawater represents a virtually infinite water resource. However, its exploitation is presently limited by the significant specific energy consumption (kWh/m(3)) required by conventional desalination technologies, further exasperated by high unit costs ($/m(3)) and environmental impacts including GHG emissions (g CO2-eq/m(3)), organism impingement/entrainment through intakes, and brine disposal through outfalls. This paper explores the state-of-the-art in present seawater desalination practice, emphasizing membrane-based technologies, while identifying future opportunities in step improvements to conventional technologies and development of emerging, potentially disruptive, technologies through advances in material science, process engineering, and system integration. In this paper, seawater reverse osmosis (RO) serves as the baseline conventional technology. The discussion extends beyond desalting processes into membrane-based salinity gradient energy production processes, which can provide an energy offset to desalination process energy requirements. The future membrane landscape in membrane-based desalination and salinity gradient energy is projected to include ultrahigh permeability RO membranes, renewable-energy driven desalination, and emerging processes including closed-circuit RO, membrane distillation, forward osmosis, pressure retarded osmosis, and reverse electrodialysis according various niche applications and/or hybrids, operating separately or in conjunction with RO. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据