4.8 Article

Graphene-like carbon with three-dimensional periodicity prepared from organic-inorganic templates for energy storage application

期刊

CARBON
卷 111, 期 -, 页码 128-132

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2016.09.067

关键词

-

资金

  1. National Key Research and Development Program [2016YFB0901600]
  2. NSF of China [61376056, 51672301, 51672295]
  3. Science and Technology Commission of Shanghai [14520722000, 16ZR1440500, 16JC1401700]
  4. Shanghai Science and Technology Development Funds [16QA1404200]
  5. Key Research Program of Chinese Academy of Sciences [KGZD-EW-T06]
  6. Youth Innovation Promotion Association CAS

向作者/读者索取更多资源

Free-standing, intergrown and covalently-bonded structures of three-dimensional (3D) graphene may have great advantages in electric and thermal transport properties for energy applications, but the desired symmetry and periodicity are rather hard to design and produce. Here we use an organic inorganic template to grow an inverse. opal graphene structure by chemical vapor deposition. The symmetry-controlling temperate is a porous polymethylmethacrylate (PMMA) opal, infiltrated with inorganic cation precursors that form an interfacial phase between spheres. A graphene-like inverse opal, comprising nanometer-thick porous carbon of few-layer graphene sheets, forms on the surfaces of the porous inorganic oxide (Al2O3, MgO, SiO2) interfacial phase by templated CVD, and it remains free-standing after template removal. The three-dimensional ordered microporous and mesoporous graphene inverse opals are highly conductive with a low sheet electrical resistance of 0.35 Omega sq(-1) and a large specific surface area of 972 m(2) g(-1). After N-doping, this inverse opal graphene exhibits a specific capacitance of 252 F g(-1) that is stable over 5000 cycles, offering great potential for electrochemical energy storage applications. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据