4.5 Article

Terahertz Imaging and Electromagnetic Model of Axon Demyelination in Alzheimer's Disease

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TTHZ.2017.2739481

关键词

Alzheimer's disease (AD); amyloid beta (A beta) protein; biomedical imaging; brain plaques and tangles; demyelination; terahertz (THz) imaging; THz time-domain spectroscopy (TDS)

资金

  1. Samsung Electronics Inc. under the Samsung Advanced Institute of Technology Global Research Outreach Program

向作者/读者索取更多资源

We investigate the utility of terahertz (THz) spectroscopy in identifying Alzheimer's disease in human brain tissue. Using reflection-mode time-domain THz spectroscopy, two-dimensional images of formalin-fixed and paraffin-embedded tissue samples of the hippocampus area were recorded in the 60 GHz-2 THz band. The THz images were compared with microscopic images of the same samples after hematoxylin and eosin staining. We demonstrate that the THz reflection spectra, particularly from white matter, reveal detectable differences between postmortem brain tissues exhibiting Alzheimer's disease and normal controls. The THz reflectivity of white matter areas was on average 4.2% higher than that of gray matter regions in tissue samples with known Alzheimer's history, whereas for normal control samples the contrast was only 2%. Additional studies further enhance this hypothesis, and the demyelination of white matter in Alzheimer's tissues suggests a possible cause for the differences in the THz reflection spectra. We also compare the THz response of the tissues with conventional Luxol-fast blue staining to demonstrate the correlation between the two methods for predicting demyelination. In addition, we present a simplified electromagnetic model of white matter axons exhibiting various degrees of demyelination to further support this hypothesis through full-wave electromagnetic simulations. This study offers, for the first time, proof of concept for the feasibility of detecting Alzheimer's disease using THz spectroscopy on ex vivo samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据