4.7 Article

Model-Based Fault Diagnosis System Verification Using Reachability Analysis

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSMC.2017.2710132

关键词

Fault diagnosis; fault estimation; reachability analysis; uncertainties; verification and validation

资金

  1. U.K. Engineering and Physical Sciences Research Council Autonomous and Intelligent Systems Programme through the BAE Systems [EP/J011525/1]
  2. EPSRC [EP/J011525/1] Funding Source: UKRI

向作者/读者索取更多资源

In model-based fault detection and isolation (FDI) systems, fault indicating signals (FISs) such as residuals and fault estimates are corrupted by various noises, uncertainties and variations. It becomes challenging to verify whether an FDI system still works or not in real life applications. It is also challenging to select a threshold so that false alarm rate and missed detection rate are kept low depending on real operation conditions. This paper proposes solutions to the aforementioned problems by quantitatively analyzing the effect of uncertainties on FIS. The problems are formulated into reachability analysis problem for uncertain systems. The reachable sets of FIS are calculated under normal and selected faulty cases, respectively. From these reachable sets, the effectiveness of an FDI system can be qualitatively verified under described uncertainties. A dedicated threshold can he further chosen to be robust to all possible described uncertainties. As a by-product, the minimum detectable fault can also be quantitatively determined by checking the intersection of the computed reachable sets. The proposed approach is demonstrated by evaluating an FDI algorithm of a motor in the presence of parameter uncertainties, unknown load, and sensor noises, where a fault estimation-based approach is adopted to diagnose amplifier, velocity, and current sensor faults.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据