4.8 Article

Dendritic structure DNA for specific metal ion biosensor based on catalytic hairpin assembly and a sensitive synergistic amplification strategy

期刊

BIOSENSORS & BIOELECTRONICS
卷 87, 期 -, 页码 157-163

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2016.08.032

关键词

Electrochemical biosensor; Pb2+ detection; Catalyzed hairpin assembly; Dendritic structure DNA; Pb2+-specific DNAzymes

资金

  1. NNSF of China [21275119, 51473136, 21575116]

向作者/读者索取更多资源

In this work, a sensitive electrochemical biosensing to Pb2+ was proposed based on the high specificity of DNAzymes to Pb2+. The response signal was efficiently amplified by the catalytic hairpin assembly induced by strand replacement reaction and the formation of dendritic structure DNA (DSDNA) by layer by -layer assembly. Firstly, in the presence of Pb2+, the substrate strand (S1) of the Pb2+ -specific DNAzymes was specifically cleaved by Pb2+. Secondly, one of the two fragments (rS1) introduced into the electrode surface was hybridized with a hairpin DNA (H1) and further replaced by another hairpin DNA (H2) by the hybridization reaction of H1 with H2. The released rS1 then induced the next hybridization with Hl. After repeated cycles, the catalytic recycling assembly of H2 with H1 was completed. Thirdly, two bioconjugates of Pt@Pd nanocages (Pt@PdNCs) labeled with DNA S3/S4 and electroactive toluidine blue (Tb) (Tb-S3-Pt@PdNCs and Tb-S4-Pt@PdNCs) were captured onto the resultant electrode surface through the hybridization of S3 and H2, S3 and S4, resulting in the formation of DSDNA triggered by layer-by -layer assembly. This formed DSDNA greatly facilitated the immobilization of manganese(III) meso-tetrakis (4-N-methylpyridiniumyl)-porphyrin (MnTMPyP) as mimicking enzyme. Under the synergistic catalysis of Pt@PdNCs and MnTMPyP to H2O2 reduction, the effective signal amplification of the developed Pb2+ biosensor was achieved. As a result, the sensitive detection of the proposed electrochemical strategy for Pb2+ was greatly improved in the range of 0.1 pM-200 nM with a detection limit of 0.033 pM. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据