4.7 Article

Stochastic Operation Framework for Distribution Networks Hosting High Wind Penetrations

期刊

IEEE TRANSACTIONS ON SUSTAINABLE ENERGY
卷 10, 期 1, 页码 344-354

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSTE.2017.2761179

关键词

Cone programming; distribution network; reconfiguration; stochastic optimization; wind power generation

资金

  1. INSF

向作者/读者索取更多资源

In this paper, a stochastic framework including two hierarchical stages is presented for the operation of distribution networks with high penetrations of wind power. In the first stage termed Day Ahead Market Stage (DAMS), the power purchases from the day-ahead market and commitment of distributed generations (DGs) are determined. The DAMS model is formulated as a mixed integer linear programming optimization problem. The uncertainty in predictions of wind generation, real time prices, and load profile are included in the optimization problem according to a scenario-based stochastic programming approach. The risk encountered due to the uncertainties is also taken into account. The objective is to minimize the expected operation cost while satisfying the acceptable level of risk. In the second stage named Real Time Market Stage (RTMS), the power purchases from the real time market, dispatch of committed DGs, load curtailment invocations, and hourly reconfigurations are determined. In each hour, the RTMS problem is solved based on the information of that hour and next few hours. To prevent large numbers of switching operations during a day, the switching cost of reconfiguration is considered. The RTMS is modeled as a mixed integer conic programming problem. To analyze the proposed framework, the IEEE 33-bus DN is used as a case study.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据