4.7 Article

A Fully-Decentralized Consensus-Based ADMM Approach for DC-OPF With Demand Response

期刊

IEEE TRANSACTIONS ON SMART GRID
卷 8, 期 6, 页码 2637-2647

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TSG.2016.2532467

关键词

ADMM; demand response; distributed DC-OPF

资金

  1. U.S. National Science Foundation [ECCS-1254310]
  2. Div Of Electrical, Commun & Cyber Sys
  3. Directorate For Engineering [1254310] Funding Source: National Science Foundation

向作者/读者索取更多资源

This paper discusses a consensus-based alternating direction method of multipliers (ADMMs) approach for solving the dynamic dc optimal power flow (DC-OPF) problem with demand response in a distributed manner. In smart grid, emerging techniques together with distributed nature of data and information, significantly increase the complexity of power systems operation and stimulate the needs for distributed optimization. In this paper, the distributed DC-OPF approach solves local OPF problems of individual subsystems in parallel, which are coordinated via global consensus variables (i.e., phase angles on boundary buses of adjacent subsystems). Three distributed DC-OPF algorithms are discussed with different convergence performance and/or communication requirement. All three distributed algorithms can effectively handle prevailing constraints for the transmission network, generating units, and demand response in individual subsystems, while the global convergence can be guaranteed. In particular, based on the traditional distributed ADMM approach, a fully decentralized algorithm without the central controller is proposed in Algorithm 2 with a new communication strategy, in which only limited information on boundary buses are exchanged among adjacent subsystems. In addition, the accelerated ADMM is discussed in Algorithm 3 for improving the convergence performance. In recognizing distributed OPF approaches in literature, one major research focus on this paper is to quantify the impact of key parameters and subsystem partitioning strategies on the convergence performance and the data traffic via numerical case studies. A general guidance for subsystem partitioning is proposed and verified via large-scale power systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据