4.7 Article

Strength and stiffness of adhesively bonded GFRP beam-column moment resisting connections

期刊

COMPOSITE STRUCTURES
卷 160, 期 -, 页码 1248-1257

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2016.11.021

关键词

Adhesive; Connections; Failure moment; GFRP; Seat angle; I-profile; Rotation; Stiffness

资金

  1. Italian Department of Civil Protection (DPC) (Project ReLuis)
  2. Natural Sciences and Engineering Research Council of Canada through Discovery Grant [RGPIN-2016-05897]

向作者/读者索取更多资源

For the first time, the feasibility of adhesively bonded connections in FRP frame structures is explored as an alternative to bolted connections. Eight full-scale GFRP beam-column connections are tested and their failure mode, strength and rotational stiffness are investigated. A single pultruded GFRP I-profile is used for the two members. In four of the specimens the beam and the column are connected by epoxy adhesive and GFRP seat angles, similar to the so-called standard bolted connection. In the remaining four specimens, the seat angles are supplemented by additional GFRP angles and stiffeners to strengthen the column flange and web. The beam-column assembly forms an inverted L-shape frame, with the column being fixed at the bottom and attached to the beam near the top. The beam, acting as a cantilever, is loaded by a point load near its free end, which subjects the connection to bending and shear. The current standard connection failed by debonding within the column flange while the improved/strengthened connection failed within the adhesive or at the adhesive-column flange interface. The test results reveal that both the standard and improved connection can have at least the same strength as the corresponding bolted connection, irrespective of whether GFRP or steel bolts are used to make the connection. Hence, the current restrictions against the use of adhesive beam-column connections in GFRP frame structures may be unjustified. In making this comparison, the observed failure load of each connection is normalized by the ultimate moment capacity of the GFRP profile in the beam-column assembly. Crown Copyright (C) 2016 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据