4.6 Article

Capillary driven flow in nanochannels - Application to heavy oil rheology studies

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.colsurfa.2016.10.038

关键词

Capillary; Nanofluidics; Bitumen; Asphaltene aggregation; Contact angle; Bingham plastic

资金

  1. Dow Canada
  2. Natural Science and Engineering Council of Canada (NSERC)

向作者/读者索取更多资源

Observations of capillary-driven flow of a liquid in a nanochannel can be used to study the liquid's rheology. Capillary-driven flow of several pure liquids and bitumen diluted in Heptol (80:20) were studied using a nanofluidic chip. Filling speed of water was lower than the theoretical predictions, as expected. However, for methanol and ethanol, experimental values agreed well with theoretical predictions. 5 and 11 wt.% bitumen solutions in heptol (80:20) followed the theoretical predictions quite well at the initial times but demonstrated deviation for longer penetration times. However, for 20 and 40 wt.% diluted bitumen, experimental observations significantly deviated from the theoretical models. Those deviations were related to the continuous changes in the observed dynamic contact angle of the advancing meniscus. Nanochannel blockage has frequently occurred due to the presence of asphaltenes aggregates when 20 wt.% diluted bitumen was used. Theoretical model for capillary filling of Bingham Plastic fluid was developed to probe the possible non-Newtonian behavior of diluted bitumen above the onset of asphaltenes precipitation. Given very small yield stress, it was difficult to precisely distinguish between Newtonian and non-Newtonian Bingham Plastic behavior. Nevertheless, our results show that Bingham Plastic model can describe the rheology of 5 wt.% and 11 wt.% bitumen at nanoscale more accurately than the Newtonian model. Our study shows nanochannels provide an experimental platform to analyze the flow of petroleum in the nanoporous media. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据