4.8 Article Proceedings Paper

Theoretical analysis of ejector refrigeration system performance under overall modes

期刊

APPLIED ENERGY
卷 185, 期 -, 页码 2074-2084

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2016.01.103

关键词

Ejector refrigeration; Theoretical model; Real gas property; Sub-critical mode; Refrigerants

向作者/读者索取更多资源

The ejector refrigeration integrated in the air-conditioning system is a promising technology, because it could be driven by the low grade energy. In the present study, a theoretical calculation based on the real gas property is put forward to estimate the ejector refrigeration system performance under overall modes (critical/sub-critical modes). The experimental data from literature are applied to validate the proposed model. The findings show that the proposed model has higher accuracy compared to the model using the ideal gas law, especially when the ejector operates at sub-critical mode. Then, the performances of the ejector refrigeration circle using different refrigerants are analyzed. R290 and R134a are selected as typical refrigerants by considering the aspects of COP, environmental impact, safety and economy. Finally, the ejector refrigeration performance is investigated under variable operation conditions with R290 and R134a as refrigerants. The results show that the R290 ejector circle has higher COP under critical mode and could operate at low evaporator temperature. However, the performance would decrease rapidly at high condenser temperature. The performance of R134a ejector circle is the opposite, with relatively lower COP, and higher COP at high condenser temperature compared to R290. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据