4.4 Article

Deep Models for Engagement Assessment With Scarce Label Information

期刊

IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS
卷 47, 期 4, 页码 598-605

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/THMS.2016.2608933

关键词

Deep learning; electroencephalography (EEG); engagement assessment; scarce label information

资金

  1. NASA [NNX10CB27C]

向作者/读者索取更多资源

Task engagement is defined as loadings on energetic arousal (affect), task motivation, and concentration (cognition) [1]. It is usually challenging and expensive to label cognitive state data, and traditional computational models trained with limited label information for engagement assessment do not perform well because of overfitting. In this paper, we proposed two deep models (i.e., a deep classifier and a deep autoencoder) for engagement assessment with scarce label information. We recruited 15 pilots to conduct a 4-h flight simulation from Seattle to Chicago and recorded their electroencephalograph (EEG) signals during the simulation. Experts carefully examined the EEG signals and labeled 20 min of the EEG data for each pilot. The EEG signals were preprocessed and power spectral features were extracted. The deep models were pretrained by the unlabeled data and were fine-tuned by a different proportion of the labeled data (top 1%, 3%, 5%, 10%, 15%, and 20%) to learn new representations for engagement assessment. The models were then tested on the remaining labeled data. We compared performances of the new data representations with the original EEG features for engagement assessment. Experimental results show that the representations learned by the deep models yielded better accuracies for the six scenarios (77.09%, 80.45%, 83.32%, 85.74%, 85.78%, and 86.52%), based on different proportions of the labeled data for training, as compared with the corresponding accuracies (62.73%, 67.19%, 73.38%, 79.18%, 81.47%, and 84.92%) achieved by the original EEG features. Deep models are effective for engagement assessment especially when less label information was used for training.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据