4.8 Article

Acetylene-sourced CVD-synthesised catalytically active graphene for electrochemical biosensing

期刊

BIOSENSORS & BIOELECTRONICS
卷 89, 期 -, 页码 496-504

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2016.03.063

关键词

CVD-grown graphene; bioelectronics; theoretical calculation; surfactant modification; 2d-materials

资金

  1. Swedish Research Council, Sweden [VR-2011-6058357]
  2. Research Directorate of the Vaal University of Technology, South Africa

向作者/读者索取更多资源

In this study, we have demonstrated the use of chemical vapour deposition (CVD) grown-graphene to develop a highly-ordered graphene-enzyme electrode for electrochemical biosensing. The graphene sheets were deposited on 1.00 mm thick copper sheet at 850 degrees C using acetylene (C2H2) as carbon source in an argon (Ar) and nitrogen (N-2) atmosphere. An anionic surfactant was used to increase wettability and hydrophilicity of graphene; thereby facilitating the assembly of biomolecules on the electrode surface. Meanwhile, the theoretical calculations confirmed the successful modification of hydrophobic nature of graphene through the anionic surface assembly, which allowed high-ordered immobilisation of glucose oxidase (GOx) on the graphene. The electrochemical sensing activities of the graphene-electrode was explored as a model for bioelectrocatalysis. The bioelectrode exhibited a linear response to glucose concentration ranging from 0.2 to 9.8 mM, with sensitivity of 0.087 A/M/cm(2) and a detection limit of 0.12 mu M (S/N=3). This work sets the stage for the use of acetylene-sourced CVD-grown graphene as a fundamental building block in the fabrication of electrochemical biosensors and other bioelectronic devices. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据