4.7 Review

Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering

期刊

ADVANCED DRUG DELIVERY REVIEWS
卷 110, 期 -, 页码 169-187

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.addr.2016.06.013

关键词

Biomaterial; Peptide design; Drug delivery; Peptide hydrogel; Self-adjuvant; Self-assembled peptide; Supramolecular nanostructure; Vaccine delivery

向作者/读者索取更多资源

Self-assembled peptides have shown outstanding characteristics for vaccine delivery and drug targeting. Peptide molecules can be rationally designed to self-assemble into specific nanoarchitectures in response to changes in their assembly environment including: pH, temperature, ionic strength, and interactions between host (drug) and guest molecules. The resulting supramolecular nanostructures include nanovesicles, nanofibers, nanotubes, nanoribbons, and hydrogels and have a diverse range of mechanical and physicochemical properties. These molecules can be designed for cell-specific targeting by including adhesion ligands, receptor recognition ligands, or peptide-based antigens in their design, often in a multivalent display. Depending on their design, self-assembled peptide nanostructures have advantages in biocompatibility, stability against enzymatic degradation, encapsulation of hydrophobic drugs, sustained drug release, shear-thinning viscoelastic properties, and/or adjuvanting properties. These molecules can also act as intracellular transporters and respond to changes in the physiological environment. Furthermore, this class of materials has shown sequence-and structure-dependent impacts on the immune system that can be tailored to non-immunogenic for drug targeting, and immunogenic for vaccine delivery. This review explores self-assembled peptide nanostructures (beta sheets, alpha helices, peptide amphiphiles, amino acid pairing, elastin like polypeptides, cyclic peptides, short peptides, Fmoc peptides, and peptide hydrogels) and their application in vaccine delivery and drug targeting. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据