4.6 Article

Predicting Drug-Target Interactions With Multi-Information Fusion

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JBHI.2015.2513200

关键词

Drug similarity; drug-target interaction (DTI); local correlations among labels of samples; multi-information fusion; robust PCA; semi-supervised learning; similarities among samples; target similarity

资金

  1. Program for New Century Excellent Talents in University [NCET-10-0365]
  2. National Nature Science Foundation of China [60973082, 11171369, 61202462, 61272395, 61370171, 61300128, 61572178]
  3. National Nature Science Foundation of Hunan province [12JJ2041, 13JJ3091]
  4. Planned Science and Technology Project of Hunan Province [2012FJ2012]
  5. Project of Scientific Research Fund of Hunan Provincial Education Department [14B023]

向作者/读者索取更多资源

Identifying potential associations between drugs and targets is a critical prerequisite for modern drug discovery and repurposing. However, predicting these associations is difficult because of the limitations of existing computational methods. Most models only consider chemical structures and protein sequences, and other models are oversimplified. Moreover, datasets used for analysis contain only true-positive interactions, and experimentally validated negative samples are unavailable. To overcome these limitations, we developed a semi-supervised based learning framework called NormMulInf through collaborative filtering theory by using labeled and unlabeled interaction information. The proposed method initially determines similarity measures, such as similarities among samples and local correlations among the labels of the samples, by integrating biological information. The similarity information is then integrated into a robust principal component analysis model, which is solved using augmented Lagrange multipliers. Experimental results on four classes of drug-target interaction networks suggest that the proposed approach can accurately classify and predict drug-target interactions. Part of the predicted interactions are reported in public databases. The proposed method can also predict possible targets for new drugs and can be used to determine whether atropine may interact with alpha1B-and beta1-adrenergic receptors. Furthermore, the developed technique identifies potential drugs for new targets and can be used to assess whether olanzapine and propiomazine may target 5HT2B. Finally, the proposed method can potentially address limitations on studies of multitarget drugs and multidrug targets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据