4.7 Article

A distributed solar collector field temperature profile control and estimation using inlet oil temperature and radiation estimates based on Iterative Extended Kalman Filter

期刊

RENEWABLE ENERGY
卷 101, 期 -, 页码 144-155

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2016.08.049

关键词

Iterative Extended Kalman Filter; Feed forward controller; Linear parabolic power plant; Shiraz solar power plant; Oil temperature estimation

向作者/读者索取更多资源

In this article, two different state space models for a distributed solar collector field have been extracted. Design of an Iterative Extended Kalman Filter (IEKF) and an appropriate controller for the distributed solar collector field and their simulations are the other purposes of this study. A feed forward controller, moreover the PID controller, has been used in the designed controller the in order to attenuate the disturbances effects caused by solar radiation, inlet oil temperature and environmental temperature. Both of the models can be used to estimate the distributed solar collector field temperature profile. It has been shown that the temperature of all parts of the solar collector field such as inlet oil temperature can be estimated by using the models in Iterative Extended Kalman Filter (IEKF) only by use of one sensor to measure the temperature along the collectors. Also it has been exposed that the used Kalman Filter could greatly eliminate the applied noises to the system, and thus makes the system robust against the influencing noises such as sensors errors. All required parameters for implementation of the Iterative Extended Kalman Filter and the controller and simulation has been extracted from Shiraz solar power plant. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据