4.5 Article

BMI-1 extends proliferative potential of human bronchial epithelial cells while retaining their mucociliary differentiation capacity

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajplung.00471.2016

关键词

air-liquid interface; airway model; lung; mucociliary differentiation; primary ciliary dyskinesia

资金

  1. Great Ormond Street Hospital Children's Charity
  2. Child Health Research Appeal Trust
  3. National Institute for Health Research Biomedical Research Centre at Great Ormond Street Hospital for Children NHS Foundation Trust and University College London
  4. Biotechnology and Biological Sciences Research Council [BB/L027755/1] Funding Source: researchfish
  5. Cancer Research UK [12733] Funding Source: researchfish
  6. Medical Research Council [1584849, MR/N009185/1, MR/K012770/1] Funding Source: researchfish
  7. National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs) [NC/L001780/1] Funding Source: researchfish
  8. BBSRC [BB/L027755/1] Funding Source: UKRI
  9. MRC [MR/N009185/1, MR/K012770/1] Funding Source: UKRI

向作者/读者索取更多资源

Air-liquid interface (ALI) culture of primary airway epithelial cells enables mucociliary differentiation providing an in vitro model of the human airway but their proliferative potential is limited. To extend proliferation, these cells were previously transduced with viral oncogenes or mouse Bmi-1 + hTERT but the resultant cell lines did not undergo mucociliary differentiation. We hypothesised that use of human BMI-1 alone would increase the proliferative potential of bronchial epithelial cells while retaining their mucociliary differentiation potential. CF and non-CF bronchial epithelial cells were transduced by lentivirus with BMI-1 then their morphology, replication kinetics and karyotype were assessed. When differentiated at ALI, mucin production, ciliary function and transepithelial electrophysiology were measured. Finally, shRNA knockdown of DNAH5 in BMI-1 cells was used to model primary ciliary dyskinesia (PCD). BMI-1 transduced basal cells showed normal cell morphology, karyotype and doubling times despite extensive passaging. The cell lines underwent mucociliary differentiation when cultured at ALI with abundant ciliation and production of the gel-forming mucins MUC5AC and MUC5B evident. Cilia displayed a normal beat frequency and 9+2 ultrastructure. Electrophysiological characteristics of BMI-1 transduced cells were similar to un-transduced cells. shRNA knockdown of DNAH5 in BMI-1 cells produced immotile cilia and absence of DNAH5 in the ciliary axoneme as seen in cells from patients with PCD. BMI-1 delayed senescence in bronchial epithelial cells, increasing their proliferative potential but maintaining mucociliary differentiation at ALI. We have shown these cells are amenable to genetic manipulation and can be used to produce novel disease models for research and dissemination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据