4.7 Article

QTL Mapping for Yield and Resistance against Mediterranean Corn Borer in Maize

期刊

FRONTIERS IN PLANT SCIENCE
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2017.00698

关键词

insect resistance; quantitative trait loci; Sesamia nonagrioides; yield; Zea mays

资金

  1. Plan Estatal de Ciencia y Tecnologia de Espana - European Union funds under the FEDER program [AGL2012-33415, AGL2015-67313-C2-1-R]
  2. Autonomous Government of Galicia, Spain [IN607A/013]

向作者/读者索取更多资源

Introduction: The Mediterranean corn borer (MCB), Sesamia nonagrioides, is a major pest of maize, Zea mays, in Mediterranean countries, inflicting significant kernel yield losses. For that reason, it necessary to know the genetic mechanisms that regulate the agronomic and resistance traits. A quantitative trait loci (QTL) mapping study for yield, resistance against MCB attack, and other relevant agronomic traits was performed using a recombinant inbred line (RIL) population derived from the cross A637 x A509 that is expected to segregate for yield, and ear, and stalk resistance to MCB. 171 RILs were evaluated in 2014 and 2015 at Pontevedra, Spain, along with the two parental inbreds A637 and A509 using a 13 x 14 single lattice design with two replications. A genetic map with 285 SNP markers was used for QTL analysis. Our objectives were to detect QTL for resistance to MCB and tolerance-related agronomic traits, to gain insights on the genetic relationship between resistance to MCB attack and yield, and to establish the best way for simultaneously improving yield and resistance to MCB. Results: Twelve significant QTL were detected for agronomic and resistance traits. QTL at bins 1.10 and 5.04 were especially interesting because the same allelic variant at these QTL simultaneously improved yield and insect resistance. In contrast, in the region 8.04-8.05, QTL showed opposite effects for yield and resistance. Several QTL for indexes which combine yield and resistance traits were found especially in the region 10.02-10.03. Conclusions: Selecting genotypes with the favorable allele of QTL on chromosome 5 (bin 5.01) will decrease tunnel length without affect yield, silking and plant height and QTL on the region 5.04 could be used to improve stalk resistance and yield simultaneously. An allele of QTL on bin 9.07 will increase ear resistance to MCB attack but it could produce later varieties while favorable allele in region 1.10 could improve ear and stalk resistance and yield without secondary negative effects. The region 8.03-8.05 mainly but also the region 10.02-10.03 and 5.04 may play an important role to elucidate the association between yield, other agronomic traits and MCB resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据