4.7 Article

Ethylene Improves Root System Development under Cadmium Stress by Modulating Superoxide Anion Concentration in Arabidopsis thaliana

期刊

FRONTIERS IN PLANT SCIENCE
卷 8, 期 -, 页码 1-15

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2017.00253

关键词

ethylene; Cd stress; superoxide; programmed cell death; root system; Arabidopsis thaliana

资金

  1. National Natural Science foundation of China [31370007]

向作者/读者索取更多资源

This work aims at identifying the effects of ethylene on the response of Arabidopsis thaliana root system to cadmium chloride (CdCl2) stress. Two ethylene-insensitive mutants, ein2-5 and ein3-1eil1-1, were subjected to (25, 50, 75, and 100 mu M) CdCl2 concentrations, from which 75 mu M concentration decreased root growth by 40% compared with wild type Col-0 as a control. Ethylene biosynthesis increased in response to CdCl2 treatment. The length of primary root and root tip in ein2-5 and ein3-1eil1-1 decreased compared with wild type after CdCl2 treatment, suggesting that ethylene play a role in root system response to Cd stress. The superoxide concentration in roots of ein2-5 and ein3-1eil1-1 was greater than in wild type seedlings under Cd stress. Application of exogenous 1-aminocyclopropane-1-carboxylic acid (ACC) (a precursor of ethylene biosynthesis) in different concentrations (0.01, 0.05 and 0.5 mu M) decreased superoxide accumulation in Col-0 root tips and increased the activities of superoxide dismutase (SOD) isoenzymes under Cd stress. This result was reversed with 5 mu M of aminoisobutyric acid AIB (an inhibitor of ethylene biosynthesis). Moreover, it was accompanied by increase in lateral roots number and root hairs length, indicating the essential role of ethylene in modulating root system development by controlling superoxide accumulation through SOD isoenzymes activities. The suppressed Cd-induced superoxide accumulation in wild type plants decreased the occurrence of cells death while programmed cell death (PCD) was initiated in the root tip zone, altering root morphogenesis (decreased primary root length, more lateral roots and root hairs) to minimize the damage caused by Cd stress, whereas this response was absent in the ein2-5 and ein3-1eil1-1 seedlings. Hence, ethylene has a role in modulating root morphogenesis during CdCl2 stress in A. thaliana by increasing the activity of SOD isoenzymes to control superoxide accumulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据