4.3 Article

Antibacterial efficacy and cytotoxicity of low intensity direct current activated silver-titanium implant system prototype

期刊

BIOMETALS
卷 30, 期 1, 页码 113-125

出版社

SPRINGER
DOI: 10.1007/s10534-017-9993-1

关键词

Low intensity direct current; Silver-titanium implant; Orthopaedic application; Antimicrobial efficacy; Cytotoxicity

资金

  1. NC State Research and Innovation and Seed Funding (RISF) program

向作者/读者索取更多资源

Silver-based devices activated by electric current are of interest in biomedicine because of their broad-spectrum antimicrobial activity. This study investigates the in vitro antibacterial efficacy and cytotoxicity of a low intensity direct current (LIDC)-activated silver-titanium implant system prototype designed for localized generation and delivery of silver ions at the implantation site. First, the antibacterial efficacy of the system was assessed against methicillin-resistant Staphylococcus aureus (MRSA) over 48 h at current levels of 3 and 6 A mu A in Mueller-Hinton broth. The cytotoxicity of the system was then evaluated over 48 h in two phases using an in vitro model with in which the activated electrodes were suspended in growth medium in a cell-seeded tissue culture plate. In phase-1, the system was tested on human osteosarcoma (MG-63) cell line and compared to titanium controls. In phase-2, the cytotoxicity characteristics were validated with normal human diploid osteoblast cells. The LIDC-activated system demonstrated high antimicrobial efficacy against MRSA, but was also toxic to human cells immediately surrounding the electrodes. The statistical analysis showed that the cytotoxicity was a result of the presence of silver, and the electric activation did not make it worse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据