4.7 Article

Decoration of TiO2 nanotube arrays by graphitic-C3N4 quantum dots with improved photoelectrocatalytic performance

期刊

APPLIED SURFACE SCIENCE
卷 394, 期 -, 页码 479-487

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apsusc.2016.10.121

关键词

TiO2 nanotube arrays; g-C3N4 quantum dots; Charge separation; Optical absorption; Photoelectrocatalytic performance

资金

  1. Joint Funds of the National Natural Science Foundation of China [U1462105]

向作者/读者索取更多资源

In this paper, we present a novel method to improve the photoelectrocatalytic (PEC) property of TiO2 nanotube arrays (TNTAs) by way of decorating it with visible-light-respond graphitic-C3N4 quantum dots (g-C3N4 QDs). The g-C3N4 QDs/TNTAs heterojunction is successfully prepared using a facile dipping method. The optimal condition of preparing g-C3N4 QDs/TNTAs heterojunction is found as 60 min of dipping duration and 0.2 mg mL(-1) of g-C3N4 QDs dipping solution. The fabricated g-C3N4 QDs/TNTAs heterojunction shows improved PEC activity comparing to TNTAs due to its better separation capability of photo-generated charges and wider optical absorption. And the photocurrent generated by the optimal g-C3N4 QDs/TNTAs photoanode is 4.3 times than that of pristine TNTAs. Besides, the g-C3N4 QDs/TNTAs heterojunction also exhibits superior PEC activities in degradation of phenol. 98.6% of phenol is successfully degraded in 120 min and the pseudo-first-order kinetic constant of phenol degradation is 4.9 times as great as that of pristine TNTAs. This work indicates that the g-C3N4 QDs/TNTAs heterojunction is expected to be a promising nanomaterial for pollutant degradation and further application in solar energy conversion. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据