4.7 Article

Novel Sources of Witchweed (Striga) Resistance from Wild Sorghum Accessions

期刊

FRONTIERS IN PLANT SCIENCE
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2017.00116

关键词

Striga resistance; witchweed; sorghum; wild sorghum relatives; Sub-Saharan Africa Nomenclature: Striga hermonthica benth.; witchweed; sorghum bicolor

资金

  1. National Academies of Science (NAS) [PGA-2000003439]
  2. NAS [AID-OAA-A-11-00012]
  3. United States Agency for International Development (USAID)
  4. National Science Foundation [DBI-0701748, IBN-0322420]
  5. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)

向作者/读者索取更多资源

Sorghum is a major food staple in sub-Saharan Africa (SSA), but its production is constrained by the parasitic plant Striga that attaches to the roots of many cereals crops and causes severe stunting and loss of yield. Away from cultivated farmland, wild sorghum accessions grow as weedy plants and have shown remarkable immunity to Striga. We sought to determine the extent of the resistance to Striga in wild sorghum plants. Our screening strategy involved controlled laboratory assays of rhizotrons, where we artificially infected sorghum with Striga, as well as field experiments at three sites, where we grew sorghum with a natural Striga infestation. We tested the resistance response of seven accessions of wild sorghum of the aethiopicum, drummondii, and arundinaceum races against N13, which is a cultivated Striga resistant landrace. The susceptible control was farmer-preferred variety, Ochuti. From the laboratory experiments, we found three wild sorghum accessions (WSA-1, WSE-1, and WSA-2) that had significantly higher resistance than N13. These accessions had the lowest Striga biomass and the fewest and smallest Striga attached to them. Further microscopic and histological analysis of attached Striga haustorium showed that wild sorghum accessions hindered the ingression of Striga haustorium into the host endodermis. In one of the resistant accessions (WSE-1), host and parasite interaction led to the accumulation of large amounts of secondary metabolites that formed a dark coloration at the interphase. Field experiments confirmed the laboratory screening experiments in that these same accessions were found to have resistance against Striga. In the field, wild sorghum had low Area under the Striga Number Progressive curve (AUSNPC), which measures emergence of Striga from a host over time. We concluded that wild sorghum accessions are an important reservoir for Striga resistance that could be used to expand the genetic basis of cultivated sorghum for resistance to the parasite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据