4.7 Review

Current status of genome sequencing and its applications in aquaculture

期刊

AQUACULTURE
卷 468, 期 -, 页码 337-347

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.aquaculture.2016.10.036

关键词

Fish; Genome; GWAS; NGS; SNP

资金

  1. National Research Foundation
  2. Prime Minister's Office, Singapore [NRF-CPR7-2010-01]

向作者/读者索取更多资源

Aquaculture is the fastest-growing food production sector in agriculture, with great potential to meet projected protein needs of human beings. Aquaculture is facing several challenges, including lack of a sufficient number of genetically improved species, lack of species-specific feeds, high mortality due to diseases and pollution of ecosystems. The rapid development of sequencing technologies has revolutionized biological sciences, and supplied necessary tools to tackle these challenges in aquaculture and thus ensure its sustainability and profitability. So far, draft genomes have been published in over 24 aquaculture species, and used to address important issues related to aquaculture. We briefly review the advances of next generation sequencing technologies, and summarize the status of whole genome sequencing and its general applications (i.e. establishing reference genomes and discovering DNA markers) and specific applications in tackling some important issues (e.g. breeding, diseases, sex determination & maturation) related to aquaculture. For sequencing a new genome, we recommend the use of 100-200x short reads using Illumina and 50-60x long reads with PacBio sequencing technologies. For identification of a large number of SNPs, resequencing pooled DNA samples from different populations is the most cost-effective way. We also discuss the challenges and future directions of whole genome sequencing in aquaculture. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据