4.7 Article

Deterministic assembly of 3D mesostructures in advanced materials via compressive buckling: A short review of recent progress

期刊

EXTREME MECHANICS LETTERS
卷 11, 期 -, 页码 96-104

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.eml.2016.12.006

关键词

Deterministic assembly; Compressive buckling; 3D mesostructures; Advanced materials

资金

  1. Air Force Office of Scientific Research (AFOSR) [MURI FA9550-08-1-0407]

向作者/读者索取更多资源

Nearly all micro/nanosystems found in biology have function that is intrinsically enabled by hierarchical, three-dimensional (3D) designs. Compelling opportunities exist in exploiting similar 3D architectures in man-made devices for applications in biomedicine, sensing, energy storage and conversion, electronics and many other areas of advanced technology. Although a lack of practical routes to the required 3D layouts has hindered progress to date, recent advances in mechanically-guided 3D assembly have the potential to provide the required access to wide-ranging structural geometries, across a broad span of length scales, in a way that leverages the most sophisticated materials and design concepts that exist in state-of-the-art 2D microsystems. This review summaries the key concepts and illustrates their use in four major categories of 3D mesostructures: open filamentary frameworks, mixed structures of membranes/filaments (Kirigami-inspired structures), folded constructs (Origami-inspired structures) and overlapping, nested and entangled networks. The content includes not only previously published examples, but also several additional illustrative cases. A collection of 3D starfish-like and jellyfish-like structures with critical dimensions that span nearly a factor of ten million, from one hundred nanometers to nearly one meter, demonstrates the scalability of the process. (C) 2017 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据