4.7 Article

Size Matters a Lot: Drought-Affected Italian Oaks Are Smaller and Show Lower Growth Prior to Tree Death

期刊

FRONTIERS IN PLANT SCIENCE
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2017.00135

关键词

anisohydric species; drought-induced dieback; growth; mortality; Quercus frainetto; tree rings; wood anatomy

资金

  1. project Alarm of forest mortality in Southern Italy (Gorgoglione Administration, Basilicata Region, Italy)
  2. Spanish Ministry of Economy [CGL2015-69186-C2-1-R]

向作者/读者索取更多资源

Hydraulic theory suggests that tall trees are at greater risk of drought-triggered death caused by hydraulic failure than small trees. In addition the drop in growth, observed in several tree species prior to death, is often interpreted as an early-warning signal of impending death. We test these hypotheses by comparing size, growth, and wood-anatomy patterns of living and now-dead trees in two Italian oak forests showing recent mortality episodes. The mortality probability of trees is modeled as a function of recent growth and tree size. Drift-diffusion-jump (DDJ) metrics are used to detect early-warning signals. We found that the tallest trees of the anisohydric Italian oak better survived drought contrary to what was predicted by the theory. Dead trees were characterized by a lower height and radial-growth trend than living trees in both study sites. The growth reduction of now-dead trees started about 10 years prior to their death and after two severe spring droughts during the early 2000s. This critical transition in growth was detected by DDJ metrics in the most affected site. Dead trees were also more sensitive to drought stress in this site indicating different susceptibility to water shortage between trees. Dead trees did not form earlywood vessels with smaller lumen diameter than surviving trees but tended to form wider latewood vessels with a higher percentage of vessel area. Since living and dead trees showed similar competition we did not expect that moderate thinning and a reduction in tree density would increase the short-term survival probability of trees.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据