4.7 Article

Metabolite Profiling of Barley Grains Subjected to Water Stress: To Explain the Genotypic Difference in Drought-Induced Impacts on Malting Quality

期刊

FRONTIERS IN PLANT SCIENCE
卷 8, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fpls.2017.01547

关键词

barley (Hordeum vulgare L.); metabolite profiling; beta-amylase activity; beta-glucan content; water stress

资金

  1. National Natural Science Foundation of China [31201166, 31330055]
  2. China Agriculture Research System [CARS-05]
  3. Jiangsu Collaborative Innovation Center for Modern Crop Production (JCIC-MCP)

向作者/读者索取更多资源

Grain weight and protein content will be reduced and increased, respectively, when barley is subjected to water stress after anthesis, consequently deteriorating the malt quality. However, such adverse impact of water stress differs greatly among barley genotypes. In this study, two Tibetan wild barley accessions and two cultivated varieties differing in water stress tolerance were used to investigate the genotypic difference in metabolic profiles during grain-filling stage under drought condition. Totally, 71 differently accumulated metabolites were identified, including organic acids, amino acids/amines, and sugars/sugar alcohols. Their relative contents were significantly affected by water stress for all genotypes and differed distinctly between the wild and cultivated barleys. The principal component analysis of metabolites indicated that the Tibetan wild barley XZ147 possessed a unique response to water stress. When subjected to water stress, the wild barley XZ147 showed the most increase of beta-amylase activity among the four genotypes, as a result of its higher lysine content, less indole-3-acetic acid (IAA) biosynthesis, more stable H2O2 homeostasis, and more up-regulation of BMY1 gene. On the other hand, XZ147 had the most reduction of beta-glucan content under water stress than the other genotypes, which could be explained by the faster grain filling process and the less expression of beta-glucan synthase gene GSL7. All these results indicated a great potential for XZ147 in barley breeding for improving water stress tolerance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据