4.6 Article

A brief history of gravitational wave research

期刊

CHINESE JOURNAL OF PHYSICS
卷 55, 期 1, 页码 142-169

出版社

ELSEVIER
DOI: 10.1016/j.cjph.2016.10.014

关键词

-

资金

  1. Ministry of Science and Technology of the ROC [MOST 102-2112-M-008-015-MY3, 105-2112-M-008-018]
  2. Science and Technology Commission of Shanghai Municipality [STCSM-14140502500]
  3. Ministry of Science and Technology of China [MOST-2013YQ150829, MOST-2016YFF0101900]

向作者/读者索取更多资源

For the benefit of the readers of this journal, the editors requested that we prepare a brief review of the history of the development of the theory, the experimental attempts to detect them, and the recent direct observations of gravitational waves (GWs). The theoretical ideas and disputes beginning with Einstein in 1916 regarding the existence and nature of gravitational waves and the extent to which one can rely on the electromagnetic analogy, especially the controversies regarding the quadrupole formula and whether gravitational waves carry energy, are discussed. The theoretical conclusions eventually received strong observational support from the binary pulsar. This provided compelling, although indirect, evidence for gravitational waves carrying away energy-as predicted by the quadrupole formula. On the direct detection experimental side, Joseph Weber started more than fifty years ago. In 1966, his bar for GW detection reached a strain sensitivity of a few times 10(-16). His announcement of coincident signals (now considered spurious), stimulated many experimental efforts from room temperature resonant masses to cryogenic detectors and laser-interferometers. Now there are km-sized interferometric detectors (LIGO Hanford, LIGO Livingston, Virgo and KAGRA). Advanced LIGO first reached a strain sensitivity of the order of 10(-22). During their first 130 days of observation (O1 run), with the aid of templates generated by numerical relativity, they did make the first detections: two 5-sigma GW events and one likely event. Besides earth-based GW detectors, the drag-free sensitivity of the LISA Pathfinder has already reached to the LISA goal level, paving the road for space GW detectors. Over the whole GW spectrum (from aHz to THz) there are efforts for detection, notably the very-low-frequency band (pulsar timing array [PTA], 300 pHz - 100 nHz) and the extremely-low (Hubble)-frequency (cosmic microwave background [CMB] experiment, 1 aHz - 10 fHz). (C) 2016 The Physical Society of the Republic of China (Taiwan). Published by Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据