4.8 Review

Silica/organosilica cross-linked block copolymer micelles: a versatile theranostic platform

期刊

CHEMICAL SOCIETY REVIEWS
卷 46, 期 3, 页码 569-585

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6cs00495d

关键词

-

资金

  1. National Key Research and Development Program of China [2016YFA0203700]
  2. NSFC [51572083, 5141101086, 51472085]
  3. Shanghai Rising-Star Program [16QA1401300]
  4. Shanghai Chenguang project [13CG25]
  5. 111 project [B14018]
  6. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

As a member of the organic-inorganic hybrid family, silica/organosilica cross-linked block copolymer micelles are becoming increasingly attractive due to the combined features of excellent self-assembly properties of amphiphilic block copolymers and the high stability and the easy surface modification of silica/organosilica components. Compared to the traditional cross-linking route with organic components, the silica/organosilica cross-linking approach could offer more advantages, such as quick reaction under mild conditions, a much stronger barrier to the diffusion of both encapsulated small molecules and functional nanoparticles and the substantial improvement in the stability of the whole micelles against the ambient environment. In this tutorial review, we will focus on the recent developments in the design, synthesis and biomedical applications of silica/organosilica cross-linked block copolymer micelles based on the self-assembly of amphiphilic block copolymers and the hydrolysis and condensation of silanes in aqueous solution. First, we will summarize the synthesis of three typical kinds of silica/organosilica cross-linked block copolymer micelles based on the self-assembly of non-ionic polyethylene oxide (PEO)-based, cationic and anionic poly(acrylic acid) (PAA)-based block copolymer micelles. Then, a series of multifunctional silica/organosilica cross-linked block copolymer micelles by encapsulating various functional nanoparticles/molecules in the hydrophobic polymer cores or hydrophilic silica/organosilica cross-linked shells are introduced and their biomedical applications in controlled drug delivery, bio-imaging (magnetic resonance, fluorescence and multimodal imaging) and imaging-guided therapies (photothermal and high intensity focused ultrasound therapies) will be discussed. Finally, the challenges and prospects of silica/organosilica cross-linked micellar nanostructures and their biological applications are discussed and assessed. It is highly expected that the silica/organosilica crosslinked micelles may provide a new and promising kind of carrier system for enhanced bio-imaging and efficient cancer therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据