4.8 Article

A Photothermal Spectrometer for Fast and Background-Free Detection of Individual Nanoparticles in Flow

期刊

ANALYTICAL CHEMISTRY
卷 89, 期 3, 页码 1994-1999

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.6b04540

关键词

-

向作者/读者索取更多资源

Sensitive detection and quantification of individual plasmonic nanoparticles is critical in a range of applications in the biological, nanomaterials, and analytical sciences. Although a wide range of techniques can be applied to the analysis of immobilized particles, high throughput analysis of nanoscale species in flow is surprisingly underdeveloped. To address this shortcoming, we present an ultrasensitive, background free technique based on the photothermal effect and termed differential detection photothermal interferometry (DDPI). We show, both theoretically and experimentally, that DDPI can specifically extract either the phase or amplitude of a photothermal signal. We then quantitatively detect 10 and 20 nm diameter gold nanoparticles at femtomolar concentrations and at linear flow speeds of 10 mm/s. In the case of 50 nm gold particles, we operate at an even higher linear flow speed of 100 mm/s, corresponding to an analyzed volume of more than 1 nL/s. This allows quantification of particle content at attomolar to femtomolar concentrations and counting rates between 0.1 and 400 particles per second. Finally, we confirm that the signal follows the size dependent variations predicted by Mie theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据