4.8 Article

Analysis of HypD Disulfide Redox Chemistry via Optimization of Fourier Transformed ac Voltammetric Data

期刊

ANALYTICAL CHEMISTRY
卷 89, 期 3, 页码 1565-1573

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.6b03589

关键词

-

资金

  1. Royal Society [IE140534]
  2. BBSRC [BB/F017316/1]
  3. Vallee Foundation
  4. EPSRC [EP/I017909/1]
  5. DFG [SO 1325/5-1, SA 494/3, SA 494/7]
  6. BBSRC [BB/F017316/1] Funding Source: UKRI
  7. EPSRC [EP/I017909/1] Funding Source: UKRI
  8. Biotechnology and Biological Sciences Research Council [1359410] Funding Source: researchfish
  9. Engineering and Physical Sciences Research Council [EP/I017909/1] Funding Source: researchfish

向作者/读者索取更多资源

Rapid disulfide bond formation and cleavage is an essential mechanism of life. Using large amplitude Fourier transformed alternating current voltammetry (FTacV) we have measured previously uncharacterized disulfide bond redox chemistry in Escherichia coli HypD. This protein is representative of a class of assembly proteins that play an essential role in the biosynthesis of the active site of [NiFe]-hydrogenases, a family of H2-activating enzymes. Compared to conventional electrochemical methods, the advantages of the FTacV technique are the high resolution of the faradaic signal in the higher order harmonics and the fact that a single electrochemical experiment contains all the data needed to estimate the (very fast) electron transfer rates (both rate constants >= 4000 s(-1)) and quantify the energetics of the cysteine disulfide redox-reaction (reversible potentials for both processes approximately 0.21 +/- 0.01 V vs SHE at pH 6). Previously, deriving such data depended on an inefficient manual trial and-error approach to simulation. As a highly advantageous alternative, we describe herein an automated multiparameter data optimization analysis strategy where the simulated and experimental faradaic current data are compared for both the real and imaginary components in each of the 4th to 12th harmonics after quantifying the charging current data using the time-domain response.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据