4.7 Article

Collisional relaxation in the inhomogeneous Hamiltonian mean-field model: Diffusion coefficients

期刊

PHYSICAL REVIEW E
卷 95, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.95.022111

关键词

-

资金

  1. Brazilian agency Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
  2. Brazilian agency Coordenacao de Aperfeicoamento de Pessoa de Nivel Superior (CAPES)

向作者/读者索取更多资源

Systems of particles with long-range interactions present two important processes: first, the formation of out-of-equilibrium quasistationary states (QSS) and, second, the collisional relaxation towards Maxwell-Boltzmann equilibrium in a much longer time scale. In this paper, we study the collisional relaxation in the Hamiltonian mean-field model using the appropriate kinetic equations for a system of N particles at order 1/N: the Landau equation when collective effects are neglected and the Lenard-Balescu equation when they are taken into account. We derive explicit expressions for the diffusion coefficients using both equations for any magnetization, and we obtain analytic expressions for highly clustered configurations. An important conclusion is that in this system collective effects are crucial in order to describe the relaxation dynamics. We compare the diffusion calculated with the kinetic equations with simulations set up to simulate the system with or without collective effects, obtaining a very good agreement between theory and simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据