4.6 Article

RTP801 Amplifies Nicotinamide Adenine Dinucleotide Phosphate Oxidase-4-Dependent Oxidative Stress Induced by Cigarette Smoke

出版社

AMER THORACIC SOC
DOI: 10.1165/rcmb.2016-0144OC

关键词

Rtp801 cigarette smoke extract induction; nicotinamide adenine dinucleotide phosphate oxidase-4; oxidative stress

资金

  1. National Institutes of Health [R01 ES016285, 2 T32 HL007171, R01 HL118171]
  2. Flight Attendant Medical Research Institute, Inc. (Clinical Innovator Award)

向作者/读者索取更多资源

Tobacco smoke (TS) causes chronic obstructive pulmonary disease, including chronic bronchitis, emphysema, and asthma. Rtp801, an inhibitor of mechanistic target of rapamycin, is induced by oxidative stress triggered by TS. Its up-regulation drives lung susceptibility to TS injury by enhancing inflammation and alveolar destruction. We postulated that Rtp801 is not only increased by reactive oxygen species (ROS) in TS but also instrumental in creating a feedforward process leading to amplification of endogenous ROS generation. We used cigarette smoke extract (CSE) to model the effect of TS in wildtype (Wt) and knockout (KO-Rtp801) mouse lung fibroblasts (MLF). The production of superoxide anion in KO-Rtp801 MLF was lower than that in Rtp801 Wt cells after CSE treatment, and it was inhibited in Wt MLF by silencing nicotinamide adenine dinucleotide phosphate oxidase-4 (Nox4) expression with small interfering Nox4 RNA. We observed a cytoplasmic location of ROS formation by real-time redox changes using reduction-oxidation-sensitive green fluorescent protein profluorescent probes. Both the superoxide production and the increase in the cytoplasmic redox were inhibited by apocynin. Reduction in the activity of Sod and decreases in the expression of Sod2 and Gpx1 genes were associated with Rtp801 CSE induction. The ROS produced by Nox4 in conjunction with the decrease in cellular antioxidant enzymatic defenses may account for the observed cytoplasmic redox changes and cellular damage caused by TS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据