4.5 Article

Numerical Investigation of the Dynamic Characteristics of a Dual-Throat-Nozzle for Fluidic Thrust-Vectoring

期刊

AIAA JOURNAL
卷 55, 期 1, 页码 86-98

出版社

AMER INST AERONAUTICS ASTRONAUTICS
DOI: 10.2514/1.J055044

关键词

-

向作者/读者索取更多资源

A computational method tailored for the simulation of fluidic thrust-vectoring systems is employed to investigate the dynamic response of a dual-throat nozzle in open-and closed-loop control. Thrust vectoring in fixed, symmetric nozzles is obtained by secondary flow injections that cause local flow separations, asymmetric pressure distributions, and, as a consequence, the vectoring of primary jet flow. The computational technique is based on a well-assessed mathematical model for the compressible unsteady Reynolds-averaged Navier-Stokes equations. A minimal control system governs the unsteady blowing. Nozzle performances and thrust-vector angles have been computed for a wide range of nozzle pressure ratios and secondary flow injection rates. The numerical results are compared with the experimental data available in the open literature. Several computations of the open-loop dynamics of the nozzle under different forcing have been performed to investigate the system response in terms of thrust-vectoring effectiveness and controllability. These computations have been used to extract autoregressive exogenous models of the nozzle dynamics. The effects of including the actuator dynamics are also discussed. Simple strategies of closed-loop control of the nozzle system by proportional-integrative-derivative regulators are investigated numerically. The closed-loop model predictive control of the system, based on the autoregressive exogenous models, is addressed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据