3.8 Proceedings Paper

Wavelength selection based on two-dimensional correlation spectroscopy: application to noninvasive hemoglobin measurement by dynamic spectrum

出版社

SPIE-INT SOC OPTICAL ENGINEERING
DOI: 10.1117/12.2244831

关键词

Dynamic Spectrum; Two-dimension correlation spectroscopy; Wavelength Selection; Noninvasive blood components measurement; hemoglobin

向作者/读者索取更多资源

Dynamic spectrum (DS) method is one of the noninvasive approaches to measure the concentration of components in human blood based on the application of photoplethysmogram (PPG). One of the targets of the DS method is to predict the hemoglobin concentration in human blood noninvasively. In previous works, the usually used wavelength in the spectrum is 600-1100 nm which is regarded as the analysis window in human tissues. Optimum wavelengths for measurements of hemoglobin concentration have not been investigated yet. In order to improve the precision and reliability of hemoglobin measurements, a method for wavelength selection based on two-dimension (2D) correlation spectroscopy has been studied in this paper. By analyzing the 2D correlation spectroscopy which is generated by the DS data from subject with different blood hemoglobin concentrations, the wavelength bands which are sensible to hemoglobin concentrations in DS can be found. We developed calibration models between the DS data and hemoglobin concentration based on data from 57 subjects. The correlation coefficient is 0.68 in the test set of the model using the whole wavelength band (600-1100nm), while in the test set of the model using the selected wavelength band (850-950nm) the correlation coefficient is 0.87. Results show the feasibility of wavelength selection utilizing 2Dcorrelation spectroscopy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据