4.8 Article

Modeling the economic dependence between town development policy and increasing energy effectiveness with neural networks. Case study: The town of Zielona Gora

期刊

APPLIED ENERGY
卷 188, 期 -, 页码 356-366

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2016.12.006

关键词

Energy efficiency increase in housing; Multi-layer neural networks; Radial neural networks; Urban energy policy; Space policy; Energy poverty

向作者/读者索取更多资源

Due to the changes in legal requirements, growth of energy consumption from different media and prices increase it is necessary to change the attitude of urban consumers. Achieving the objectives of energy policy in each country requires societies to consolidate the confidence that reducing the demand for energy will pay to each household. Creating a positive investment climate, promoting new models and the dissemination of good examples can also lead to economic growth through the use of low-carbon technologies. In many countries, including Poland, the high energy intensity of buildings is seen as a result of the use of low quality materials, low constructing awareness causing the low standard of residential buildings, which is the reason for forcing thermal renovations. This article presents the distribution of market potential of savings for energy efficient renovations in construction on the example of a medium-sized city of Zielona Gora (Poland), which may be representative of cities in the country and in the world. The potential was determined on the basis of technology and a year of a construction of the buildings, technologies used, kind of development and dominating kind of heat and power supply. The calculated potential was presented as the value of the investments necessary to reduce energy consumption by 1 kW h/m(2). Artificial neural networks, which represent a sophisticated modeling technique and are among the computational intelligence methods were used to compute a distribution of potential. The article makes use of possibilities of multi-layer artificial neural networks trained by back propagation error technique and neural networks with radial basis functions, which is a new feature in the analysis of the energy potential. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据