4.6 Article

Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure

期刊

PHYSICAL REVIEW A
卷 95, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.95.020501

关键词

-

资金

  1. National Key Research and Development Program of China [2016YFA0301900, 2016YFA0301901]
  2. National Natural Science Foundation of China [11374178, 11405093, 11574002, 11504197]
  3. recruitment program of global youth experts of China

向作者/读者索取更多资源

In classical computational chemistry, the coupled-cluster ansatz is one of the most commonly used ab initio methods, which is critically limited by its nonunitary nature. The unitary modification as an ideal solution to the problem is, however, extremely inefficient in classical conventional computation. Here, we provide experimental evidence that indeed the unitary version of the coupled-cluster ansatz can be reliably performed in a physical quantum system, a trapped-ion system. We perform a simulation on the electronic structure of a molecular ion (HeH+), where the ground-state energy surface curve is probed, the energies of the excited states are studied, and bond dissociation is simulated nonperturbatively. Our simulation takes advantages from quantum computation to overcome the intrinsic limitations in classical computation, and our experimental results indicate that the method is promising for preparing molecular ground states for quantum simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据