4.8 Article

Conjugation-Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non-TADF Units to TADF-Active Polymers

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 27, 期 7, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201605051

关键词

-

资金

  1. CSC (China Scholarship Council)
  2. cfaed (DFG Excellence Cluster)

向作者/读者索取更多资源

Thermally activated delayed fluorescence (TADF)-type compounds have great potential as emitter molecules in organic light-emitting diodes, allowing for electrofluorescence with 100% internal quantum efficiency. In small molecules, TADF is achieved through the formation of intramolecular charge-transfer states. The only design limitation is the requirement that donor and acceptor entities spatially decouple the highest occupied and lowest unoccupied molecular orbitals, respectively, to minimize exchange splitting. The development of polymeric TADF emitters, on the contrary, has seen comparably small progress and those are typically built up from monomeric units that show promising TADF properties in small molecule studies beforehand. By contrast, herein, a way to achieve TADF properties in cyclic oligomers and polymers composed of non-TADF building blocks is shown. Due to a strongly decreased energy splitting of the polymer with respect to the individual repeating unit between the lowest singlet and triplet excited state (Delta E-ST) and a sufficiently high radiative decay rate k(r)(S), a highly efficient TADF polymer with up to 71% photoluminescence quantum yield is obtained. For the first time, an encouraging method is provided for producing highly efficient TADF oligomers and polymers from solely non-TADF units via induced conjugation, opening a new design strategy exclusive polymers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据