4.8 Article

Tailored Yolk-Shell Sn@C Nanoboxes for High-Performance Lithium Storage

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 27, 期 8, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201606023

关键词

-

资金

  1. Australian Research Council
  2. Queensland Government
  3. CAS/SAFEA International Partnership Program for Creative Research Teams
  4. Australian National Fabrication Facility
  5. Australian Microscopy and Microanalysis Research Facility at the Centre for Microscopy and Microanalysis, The University of Queensland

向作者/读者索取更多资源

A yolk-shell Sn@C nanobox composite with controllable structures has been synthesized using a facile approach. The void space is engineered to fit the volume expansion of Sn during cycling. It is demonstrated that the shell thickness of carbon nanobox has substantial influence on both nanostructures and the electrochemical performance. With an optimized shell thickness, a high reversible capacity of 810 mA h g(-1) can be maintained after 500 cycles, corresponding to 90% retention of the second discharge capacity. For Sn@C materials with either thinner or thicker carbon shells, significant capacity decay or a decreased specific capacity are observed during cycling. The present study sheds light on the rational design of nanostructured electrode materials with enhanced electrochemical performance for next-generation lithium ion batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据