4.6 Article

An Observational Upper Limit on the Interstellar Number Density of Asteroids and Comets

期刊

ASTRONOMICAL JOURNAL
卷 153, 期 3, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-3881/aa5c8a

关键词

comets; general - minor planets; asteroids; general - planetary systems; protoplanetary disks

资金

  1. STFC [ST/P000304/1, ST/L000709/1] Funding Source: UKRI

向作者/读者索取更多资源

We derived 90% confidence limits (CLs) on the interstellar number density (rho(CL)(IS)) of interstellar objects (ISOs; comets and asteroids) as a function of the slope of their size-frequency distribution (SFD) and limiting absolute magnitude. To account for gravitational focusing, we first generated a quasi-realistic ISO population to similar to 750 au from the Sun and propagated it forward in time to generate a steady state population of ISOs with heliocentric distance <50 au. We then simulated the detection of the synthetic ISOs using pointing data for each image and average detection efficiencies for each of three contemporary solar system surveys-Pan-STARRS1, the Mt. Lemmon Survey, and the Catalina Sky Survey. These simulations allowed us to determine the surveys' combined ISO detection efficiency under several different but realistic modes of identifying ISOs in the survey data. Some of the synthetic detected ISOs had eccentricities as small as 1.01, which is in the range of the largest eccentricities of several known comets. Our best CL of rho(CL)(SI) = 1.4 x 10(-4) au(-3) implies that the expectation that extra-solar systems form like our solar system, eject planetesimals in the same way, and then distribute them throughout the Galaxy, is too simplistic, or that the SFD or behavior of ISOs as they pass through our solar system is far from expectation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据