4.7 Article

Controlling Self-Assembling Peptide Hydrogel Properties through Network Topology

期刊

BIOMACROMOLECULES
卷 18, 期 3, 页码 826-834

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.6b01693

关键词

-

资金

  1. UK Engineering and Physical Sciences Research Council (EPSRC Fellowship) [EP/K016210/1]
  2. University of Manchester KTA Programme
  3. University of Manchester Alumni fund and Peptisyntha (Solvay Group)
  4. EPSRC [EP/K016210/1] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [EP/K016210/1] Funding Source: researchfish

向作者/读者索取更多资源

Self-assembling peptide-based hydrogels have encountered increasing interest in the recent years as scaffolds for 3D cell culture or for controlled drug delivery. One of the main challenges is the fine control of the mechanical properties of these materials. The bulk properties of hydrogels not only depend on the intrinsic properties of the fibers but also on the network topology formed. In this work we show how fiber fiber interactions can be manipulated by design to control the final hydrogel network topology and therefore control the final properties of the material. This was achieved by exploiting the design features of beta-sheet forming peptides based on hydrophobic and hydrophilic residue alternation and exploiting the ability of the arginine's guanidine side group to interact with itself and with other amino acid side groups. By designing octa-peptides based on phenylalanine, glutamic acid, lysine, and arginine, we have investigated how fiber association and bundling affect the dynamic shear modulus of hydrogels and how it can be controlled by design. This work opens the possibility to fine-tune by design the bulk properties of peptide hydrogels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据