4.5 Article

Fire regimes and environmental gradients shape vertebrate and plant distributions in temperate eucalypt forests

期刊

ECOSPHERE
卷 8, 期 4, 页码 -

出版社

WILEY
DOI: 10.1002/ecs2.1781

关键词

Australia; biodiversity; birds; boosted regression trees; climate; fire ecology; forest management; mammals; rainfall; sampling design; species distribution models; temperature

类别

资金

  1. Australian Research Council Centre
  2. Department of Environment, Land, Water and Planning
  3. Natural Hazards Cooperative Research Centre and Parks Victoria

向作者/读者索取更多资源

Fire is a global driver of ecosystem structure, function, and change. Problems common to fire scientists and managers worldwide include a limited knowledge of how multiple taxonomic groups within a given ecosystem respond to recurrent fires, and how interactions between fire regimes and environmental gradients influence biodiversity. We tested six hypotheses relating to fire regimes and environmental gradients in forest ecosystems using data on birds (493 sites), mammals (175 sites), and vascular plants (615 sites) systematically collected in dry eucalypt forests in southeastern Australia. We addressed each of these hypotheses by fitting species distribution models which differed in the environmental variables used, the spatial extent of the data, or the type of response data. We found (1) as predicted, fire interacted with environmental gradients and shaped species distributions, but there was substantial variation between species; (2) multiple characteristics of fire regimes influenced the distribution of forest species; (3) common to vertebrates and plants was a strong influence of temperature and rainfall gradients, but contrary to predictions, inter-fire interval was the most influential component of the fire regime on both taxonomic groups; (4) mixed support for the hypothesis that fire would be a stronger influence on species occurrence at a smaller spatial extent; only for vertebrates did scale have an effect in the direction expected; (5) as predicted, vertebrates closely associated with direct measures of habitat structure were those most strongly influenced by fire regimes; and (6) the modeled fire responses for birds were sensitive to the use of either presence-absence or abundance data. These results underscore the important insights that can be gained by modeling how fire regimes, not just fire events, influence biota in forests. Our work highlights the need for management of fire regimes to be complemented by an understanding of the underlying environmental gradients and key elements of habitat structure that influence resource availability for plants and animals. We have demonstrated that there are general patterns in biotic responses to fire regimes and environmental gradients, but landscape management must continue to carefully consider species, scale, and the quality of biodiversity data to achieve biodiversity conservation in fire-prone forests.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据