4.6 Article

ZAR1 is a novel epigenetically inactivated tumour suppressor in lung cancer

期刊

CLINICAL EPIGENETICS
卷 9, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/s13148-017-0360-4

关键词

Lung cancer; ZAR1 (zygote arrest 1); Tumour suppressor; DNA methylation; Epigenetics

资金

  1. DZL grant (Deutsches Zentrum fur Lungenforschung)

向作者/读者索取更多资源

Background: Lung cancer is the leading cause of cancer-related deaths with 1.8 million new cases each year and poor 5-year prognosis. Promoter hypermethylation of tumour suppressors leads to their inactivation and thereby can promote cancer development and progression. Results: In this study, we analysed ZAR1 (zygote arrest 1), which has been said to be a maternal-effect gene and its expression mostly limited to certain reproductive tissues. Our study shows that ZAR1 is expressed in normal lung but inactivated by promoter methylation in lung cancer. ZAR1 is hypermethylated in primary lung cancer samples (22% small cell lung carcinoma (SCLC) and 76% non-small cell lung carcinoma (NSCLC), p < 0.001) vs. normal control lung tissue (11%). In lung cancer cell lines, ZAR1 was significantly methylated in 75% of SCLC and 83% of NSCLC vs. normal tissue (p < 0.005/0.05). In matching tumours and control tissues, we observed that NSCLC primary tumour samples exhibited a tumour-specific promoter methylation of ZAR1 in comparison to the normal control lung tissue. Demethylation treatment of various lung cancer cell lines reversed ZAR1 promoter hypermethylation and subsequently re-established ZAR1 expression. In addition, we could show the growth inhibitory potential of ZAR1 in lung cancer cell lines and cancer cell lines. Exogenous expression of ZAR1 not only inhibited colony formation but also blocked cell cycle progression of cancer cell lines. Conclusions: Our study shows for the first time the lung tumour-specific epigenetic inactivation of ZAR1 due to DNA methylation of its CpG island promoter. Furthermore, ZAR1 was characterised by the ability to block tumour growth through the inhibition of cell cycle progression in cancer cell lines. We propose that ZAR1 could serve as an epigenetically inactivated biomarker in lung cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据