4.8 Article

Hexagonal Arrays of Cylindrical Nickel Microstructures for Improved Oxygen Evolution Reaction

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 9, 期 8, 页码 7036-7043

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.6b14129

关键词

nickel; oxygen evolution reaction; bubble release; water electrolysis; zinc-air fuel cell; wetting properties

资金

  1. Natural Sciences and Engineering Research Council (NSERC) of Canada Discovery Frontiers Program [RGPNM 477963-2015]
  2. ZincNyx Energy Solutions
  3. NSERC Discovery Program [1077758]
  4. CMC Microsystems [3926]
  5. Canada Research Chairs Program [950-215846]
  6. Canada Foundation for Innovation (CFI)
  7. British Columbia Knowledge Development Fund (BCKDF)
  8. Western Economic Diversification Canada
  9. Simon Fraser University

向作者/读者索取更多资源

Fuel-cell systems are of interest for a wide range of applications, in part for their utility in power generation from nonfossil-fuel sources. However, the generation of these alternative fuels, through electrochemical means, is a relatively inefficient process due to gas passivation of the electrode surfaces. Uniform microstructured nickel surfaces were prepared by photolithographic techniques as a systematic approach to correlating surface morphologies to their performance in the electrochemically driven oxygen evolution reaction (OER) in alkaline media. Hexagonal arrays of microstructured Ni cylinders were prepared with features of proportional dimensions to the oxygen bubbles generated during the OER process. Recessed and pillared features were investigated relative to planar Ni electrodes for their influence on OER performance and, potentially, bubble release. The arrays of cylindrical recesses were found to exhibit an enhanced OER efficiency relative to planar nickel electrodes. These microstructured electrodes had twice the current density of the planar electrodes at an overpotential of 100 mV. The results of these studies have important implications to guide the preparation of more-efficient fuel generation by water electrolysis and related processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据