4.5 Article

Cotton (Gossypium hirsutum L.) genotypes with contrasting K+/Na+ ion homeostasis: implications for salinity tolerance

期刊

ACTA PHYSIOLOGIAE PLANTARUM
卷 39, 期 3, 页码 -

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s11738-017-2381-1

关键词

Sodium exclusion; Sodium sequestration; Potassium retention; Non-invasive micro-test technique; Ion fluxes

资金

  1. Modern Agricultural Industry Technology System in Henan [S2013-07-1]
  2. China Agricultural Research System [CARS-18-05]
  3. Innovation Project of the Chinese Academy of Agricultural Sciences [CAAS-ASTIP-2016-CCRI]

向作者/读者索取更多资源

Cotton (Gossypium hirsutum L.) possesses notable inter- and intraspecific salt tolerance variation, but the mechanisms underlying this variation are, more or less, unclear. To explore salt stress responses, Na+/K+ transport and the transcriptional profiles of salinity tolerance candidate genes (e.g., GhSOS1, GhNHX1, and GhAKT1) were evaluated in four cotton cultivars (differing in salt sensitivities) using electrophysiological and qRT-PCR assays. Physiology and lipid peroxidation assays revealed the following pattern of salt tolerance, in decreasing order: CZ91 > CCRI44 > CCRI49 > Z571. Salinity caused ion imbalances in plants, but ion homeostasis was more pronounced in Z571, which accumulated more Na+ and less K+ in leaves. In contrast, salt-tolerant cultivars, especially CZ91, retained less Na+, but more K+ under salt stress. The non-invasive micro-test technique revealed that Z571 exhibited a higher capacity to transport Na+ from roots to shoots, but a lower capacity to extrude Na+ and retain K+ in leaves under salinity. Meanwhile, NaCl-induced changes in Na+ and K+ ion homeostasis were less pronounced in salt-tolerant cultivars, increasing leaf K+/Na+ ratios under salinity. Additionally, NaCl increased the GhSOS1 transcript abundance in hypocotyls, but this increase was more pronounced in salt-sensitive Z571. On the other hand, NaCl significantly enhanced the transcript abundances of GhSOS1 in leaves and/or GhAKT1 in hypocotyls of salt-tolerant cultivars. NaCl also increased the GhNHX1 transcript abundance, but there was no strong correlation between GhNHX1 expression level and salt resistance. The present findings provided an explanation for salt tolerance variation in cotton, illuminating the transcriptional regulation of K+/Na+ transport and the maintenance of the K+/Na+ ratio as underlying attributes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据