4.7 Article

STELLAR, GAS, AND DARK MATTER CONTENT OF BARRED GALAXIES

期刊

ASTROPHYSICAL JOURNAL
卷 835, 期 1, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/835/1/80

关键词

galaxies: fundamental parameters; galaxies: halos; galaxies: spiral; galaxies: statistics; galaxies: structure

资金

  1. PAPIIT project from DGAPA-UNAM [IA103517]
  2. Alfred P. Sloan Foundation
  3. National Science Foundation
  4. U.S. Department of Energy
  5. National Aeronautics and Space Administration
  6. Japanese Monbukagakusho
  7. Max Planck Society
  8. Higher Education Funding Council for England
  9. American Museum of Natural History
  10. Astrophysical Institute Potsdam
  11. University of Basel
  12. University of Cambridge
  13. Case Western Reserve University
  14. University of Chicago
  15. Drexel University
  16. Fermilab
  17. Institute for Advanced Study
  18. Japan Participation Group
  19. Johns Hopkins University
  20. Joint Institute for Nuclear Astrophysics
  21. Kavli Institute for Particle Astrophysics and Cosmology
  22. Korean Scientist Group
  23. Chinese Academy of Sciences (LAMOST)
  24. Los Alamos National Laboratory
  25. Max-Planck-Institute for Astronomy (MPIA)
  26. Max-Planck-Institute for Astrophysics (MPA)
  27. New Mexico State University
  28. Ohio State University
  29. University of Pittsburgh
  30. University of Portsmouth
  31. Princeton University
  32. United States Naval Observatory
  33. University of Washington
  34. Division Of Physics
  35. Direct For Mathematical & Physical Scien [1430152] Funding Source: National Science Foundation

向作者/读者索取更多资源

We select a sample of galaxies from the Sloan Digital Sky Survey Data Release 7 (SDSS-DR7) where galaxies are classified, through visual inspection, as hosting strong bars, weak bars, or as unbarred galaxies, and make use of H I mass and kinematic information from the Arecibo Legacy Fast ALFA survey catalog, to study the stellar, atomic gas, and dark matter content of barred disk galaxies. We find, in agreement with previous studies, that the bar fraction increases with increasing stellar mass. A similar trend is found with total baryonic mass, although the dependence is not as strong as with stellar mass, due to the contribution of gas. The bar fraction shows a decrease with increasing gas mass fraction. This anticorrelation between the likelihood of a galaxy hosting a bar with the gas richness of the galaxy results from the inhibiting effect the gas has in the formation of bars. We also find that for massive galaxies with stellar masses larger than 10(10) M-circle dot, at fixed stellar mass, the bar fraction decreases with increasing global halo mass (i.e., halo mass measured up to a radius of the order of the H I disk extent).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据