4.6 Article

Design Principle and Loss Engineering for Photovoltaic-Electrolysis Cell System

期刊

ACS OMEGA
卷 2, 期 3, 页码 1009-1018

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.7b00012

关键词

-

资金

  1. Global Frontier R& D Program of the Center for Multiscale Energy System - National Research Foundation under the Ministry of Science, ICT and Future, Korea [2012M3A6A7054855]
  2. Ministry of Trade, Industry and Energy (MOTIE) under Industrial Strategic Technology Development Program, Korea [0417-2016-0019]

向作者/读者索取更多资源

The effects of exchange current density, Tafel slope, system resistance, electrode area, light intensity, and solar cell efficiency were systematically decoupled at the converter-assisted photovoltaic-water electrolysis system. This allows key determinants of overall efficiency to be identified. On the basis of this model, 26.5% single-junction GaAs solar cell was combined with a membrane-electrode-assembled electrolysis cell (EC) using the dc/dc converting technology. As a result, we have achieved a solar-to-hydrogen conversion efficiency of 20.6% on a prototype scale and demonstrated light intensity tracking optimization to maintain high efficiency. We believe that this study will provide design principles for combining solar cells, ECs, and new catalysts and can be generalized to other solar conversion chemical devices while minimizing their power loss during the conversion of electrical energy into fuel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据