4.6 Article

The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM

期刊

APPLIED PHYSICS LETTERS
卷 110, 期 10, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.4978033

关键词

-

资金

  1. Engineering and Physical Sciences Research Council (EPSRC) UK [EP/M00662X/1, EP/M009297/1, EP/M006727/1]
  2. Engineering and Physical Sciences Research Council [EP/M00662X/1, EP/M009297/1, EP/P005152/1, EP/M006727/1] Funding Source: researchfish
  3. EPSRC [EP/P005152/1, EP/M006727/1, EP/M009297/1, EP/M00662X/1] Funding Source: UKRI

向作者/读者索取更多资源

The role of nitrogen doping on the stability and memory window of resistive state switching in N-doped Ta2O5 deposited by atomic layer deposition is elucidated. Nitrogen incorporation increases the stability of resistive memory states which is attributed to neutralization of electronic defect levels associated with oxygen vacancies. The density functional simulations with the screened exchange hybrid functional approximation show that the incorporation of nitrogen dopant atoms in the oxide network removes the O vacancy midgap defect states, thus nullifying excess defects and eliminating alternative conductive paths. By effectively reducing the density of vacancy-induced defect states through N doping, 3-bit multilevel cell switching is demonstrated, consisting of eight distinctive resistive memory states achieved by either controlling the set current compliance or the maximum voltage during reset. Nitrogen doping has a threefold effect: widening the switching memory window to accommodate the more intermediate states, improving the stability of states, and providing a gradual reset for multi-level cell switching during reset. The N-doped Ta2O5 devices have relatively small set and reset voltages (< 1 V) with reduced variability due to doping.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据