4.7 Review

Hutchinson-Gilford Progeria Syndrome: A premature aging disease caused by LMNA gene mutations

期刊

AGEING RESEARCH REVIEWS
卷 33, 期 -, 页码 18-29

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.arr.2016.06.007

关键词

Laminopathies; Nuclear lamina; Progerin; Genomic instability; HGPS pathology; HGPS treatment

资金

  1. NIH [RO1 GM094513-01]
  2. Spanish Ministry of Economy and Competitiveness [BFU2013-42709P]
  3. European Regional Development Fund
  4. AHA [16PRE27510016]

向作者/读者索取更多资源

Products of the LMNA gene, primarily lamin A and C, are key components of the nuclear lamina, a proteinaceous meshwork that underlies the inner nuclear membrane and is essential for proper nuclear architecture. Alterations in lamin A and C that disrupt the integrity of the nuclear lamina affect a whole repertoire of nuclear functions, causing cellular decline. In humans, hundreds of mutations in the LMNA gene have been identified and correlated with over a dozen degenerative disorders, referred to as laminopathies. These diseases include neuropathies, muscular dystrophies, lipodystrophies, and premature aging diseases. This review focuses on one of the most severe laminopathies, Hutchinson-Gilford Progeria Syndrome (HGPS), which is caused by aberrant splicing of the LMNA gene and expression of a mutant product called progerin. Here, we discuss current views about the molecular mechanisms that contribute to the pathophysiology of this devastating disease, as well as the strategies being tested in vitro and in vivo to counteract progerin toxicity. In particular, progerin accumulation elicits nuclear morphological abnormalities, misregulated gene expression, defects in DNA repair, telomere shortening, and genomic instability, all of which limit cellular proliferative capacity. In patients harboring this mutation, a severe premature aging disease develops during childhood. Interestingly, progerin is also produced in senescent cells and cells from old individuals, suggesting that progerin accumulation might be a factor in physiological aging. Deciphering the molecular mechanisms whereby progerin expression leads to HGPS is an emergent area of research, which could bring us closer to understanding the pathology of aging. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据