4.7 Article

Dynamic stability of single-walled carbon nanotube embedded in a viscoelastic medium under the influence of the axially harmonic load

期刊

COMPOSITE STRUCTURES
卷 162, 期 -, 页码 227-243

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2016.12.003

关键词

Nonlocal elasticity; Dynamic stability; Embedded nanobeam; Magnetic field; Time-varying axial load

资金

  1. Serbian Ministry of Science and Environmental Protection [OI 174001, OI 174011]

向作者/读者索取更多资源

The nonlinear model of a single-walled carbon nanotube (SWCNT) modeled as a nanobeam embedded in a Kelvin-Voigt viscoelastic medium is developed by using the nonlocal continuum theory. It is assumed that the nanobeam vibrates under the influence of the longitudinal magnetic field and time-varying axial load. Based on the nonlocal Euler-Bernoulli beam theory, Maxwell's equations and von Karman nonlinear strain-displacements relation, we obtain the nonlinear partial differential equations of transversal motion of the embedded nanobeam with different boundary conditions. The relationship between nonlinear amplitude and frequency of variable axial load in the presence of the longitudinal magnetic field is derived by using the perturbation method of multiple scales. An approximate analytical solution for nonlinear frequency and instability regions for the linear case of vibration is also considered in this paper. In order to analyze nonlinear dynamical stability regions of SWCNT, the incremental harmonic balance (IHB) method is introduced for obtaining iterative relationship of frequency and amplitude of time varying axial load. It is showed that the nonlocal parameter, magnetic field effects and stiffness coefficient of the viscoelastic medium have significant effects on vibration and stability behavior of nanobeam and therefore receive substantial attention. In addition, from the presented numerical results one can see the influence of the small scale, magnetic field and foundation coefficients on the frequency-response curve, nonlinear frequency and instability regions for the linear and nonlinear cases. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据